
What is Patroni, really?
Polina Bungina, Alexander Kukushkin

HOW2025
 PostgreSQL & IvorySQL

Eco Conference

Please write the title in all
capital letters

Use bullet points to
summarize information
rather than writing long
paragraphs in the text
box

About us

• Principal Software Engineer
@Microsoft

• The Patroni guy

• akukushkin@microsoft.com

• Software Engineer @Zalando

• polina.bungina@zalando.de

Polina BunginaAlexander Kukushkin

● What is it, really?

● Automatic failover done wrong

● Patroni overview

○ how it works?

○ notable features

Agenda

3

What is it, really?

What is it, really?

● Originated from Governor project by Compose, in 2015

● Main functions:

○ Automatic failover

○ Cluster creation and initial setup

○ Cluster management

○ ~ Monitoring

5

https://github.com/compose/governor

Automatic failover done wrong

Running two nodes only

primary

Automatic failover done wrong

standby
WAL stream

health-check

7

Running two nodes only

primary

Automatic failover done wrong

standby
WAL stream

health-check

Should I…
promote?

8

Running two nodes only

primary

Automatic failover done wrong

primary

9

Avoiding split-brain

primary

Automatic failover done wrong

standby
WAL stream

health-check

Should I…
promote?

10

STONITH

Avoiding split-brain

● STONITH (shoot the other node in the head)

● Must use a secondary network

● Almost impossible to get it right

Automatic failover done wrong

11

Single witness node

primary

Automatic failover done wrong

standby
WAL stream

witness node
(arbiter) health-checkhealth

-c
heck

12

primary

Automatic failover done wrong

standby
WAL stream

witness node health-checkhealth
-c

heck

13

Single witness node

primary

Automatic failover done wrong

standby
WAL stream

witness node
(arbiter) health-checkhealth

-c
heck

Promote
standby!

14

Single witness node

ST
O

NIT
H

primary

Automatic failover done wrong

primary

witness node
(arbiter) health-check

15

Single witness node

Things to consider

● Think about network partition

● Prevent split-brain → fencing

○ STONITH

● Shut down

● Kill old connections, re-configure proxy

○ Self-fencing (locally)

● Watchdog

Automatic failover done wrong

16

Local agents

primary

Automatic failover done wrong

standby
WAL stream

17

agent agent

witness node
(arbiter)

DC3

Local agents

primary

Automatic failover done wrong

18

agent

witness node
(arbiter)

DC1

standby

agent

standby

agent

DC2

primary agent

witness node
(arbiter)

DC1 (isolated)

DC3

Local agents
Automatic failover done wrong

19

standby

agent

standby

agent

DC2

But how to do it right?

primary standby
WAL stream

20

agent agent

witness node
(arbiter)

Quorum

But how to do it right?

primary standby

WAL stream

Quorum

agent agent

21

But how to do it right?

primary standby

WAL stream

Quorum

agent

22

Patroni: how it works?

General idea

● State stored in Distributed Configuration Store (DCS)

○ Etcd, ZooKeeper, Consul, Kubernetes control-plane

● Built-in distributed consensus (RAFT, Zab)

● Key-value store

● Atomic CAS (compare-and-swap) operations

● Lease/Session/TTL to expire data

○ /leader, /members/*

● Watches for keys

How it works?

24

Patroni overview

UPDATES /leader, /status, …

primary

How it works?

node Bstandby

UPDATES /members/B

WATCHES /leader

node A

/leader: “A”,
ttl: 30

25

Leader race
How it works?

node A

26

standby node B

standby node C

primary

SUCCESS

/leader: “A”,
ttl: 30

WATCH /leader

WATCH /leader

UPDATE(“/leader”, “A”, ttl=30,
prevValue=”A”)

Leader race
How it works?

node A

/leader: “A”,
ttl: 1

27

standby node B

standby node C

primary

WATCH /leader

WATCH /leader

Leader race
How it works?

28

standby node B

standby node C

NOTIFY(“/leader”, expired=true)

NOTIFY(“/leader”, expired=true)

Leader race
How it works?

29

standby node B

standby node C

1) GET A:8008/patroni ->
timeout
2) GET C:8008/patroni ->
wal_position: 100

1) GET A:8008/patroni ->
timeout
2) GET C:8008/patroni ->
wal_position: 100

Leader race
How it works?

30

standby node B

standby node C

/leader: “B”,
ttl: 30CREATE (“/leader”, “B”, ttl=30,

prevExists=False)

CREATE (“/leader”, “C”, ttl=30,
prevExists=False)

SUCCESS

FAIL

Self-fencing

node Aprimary

How it works?

node Bstandby

UPDATE /members/B

WATCH /leader

UPDATE /leader

read-only
instance

/leader: “A”,
ttl: 19

31

Self-fencing

standby

How it works?

node Bstandby

UPDATE /members/B

WATCH /leader

UPDATE /leader

node A

demote

/leader: “A”,
ttl: 9

32

read-only
instance

Self-fencing

standby

How it works?

node Bstandby

CREATES /leader

NOTIFIES /leader expired

node A

/leader: “A”,
ttl: 0

promote 2.

1.

3.

33

read-only
instance

Communication with DCS – leader
How it works?

 get /
(whole cluster)

update /leader

update /status

write /failover

update /sync

…

H
A

 loop
sleep for loop_wait

34

retriable

ttl, loop_wait, retry_timeout
How it works?

loop_wait + 2 * retry_timeout <= ttl

 get /
(whole cluster)

update /leader

(10) (10) (30)

35

Data stored in DCS

$ etcdctl get --keys-only --prefix /service/demo

/service/demo/config /* global (dynamic) configuration */

/service/demo/initialize /* cluster identifier */

/service/demo/leader /* who is the primary? */

/service/demo/members/patroni1

/service/demo/members/patroni2 /* discovery */

/service/demo/members/patroni3

/service/demo/status

/service/demo/history /* failover history */

/service/demo/failover /* manual failover/switchover */

/service/demo/sync /* synchronous mode */

How it works?

36

Data stored in DCS

$ patronictl list

+ Cluster: demo (7497665970948870167) --------+----+-----------+

| Member | Host | Role | State | TL | Lag in MB |

+----------+------------+---------+-----------+----+-----------+

| patroni1 | 172.18.0.2 | Leader | running | 1 | |

| patroni2 | 172.18.0.7 | Replica | streaming | 1 | 0 |

| patroni3 | 172.18.0.3 | Replica | streaming | 1 | 0 |

+----------+------------+---------+-----------+----+-----------+

How it works?

data retrieved
from DCS

37

Data stored in DCS

$ etcdctl get --print-value-only --prefix /service/demo/leader

patroni1

$ etcdctl get --print-value-only --prefix /service/demo/initialize

7497665970948870167

How it works?

38

Data stored in DCS

$ etcdctl get --keys-only --prefix /service/demo/members/patroni2

{
 "conn_url": "postgres://172.18.0.7:5432/postgres",
 "api_url": "http://172.18.0.7:8008/patroni",
 "state": "running",
 "role": "replica",
 "version": "4.0.5",
 "xlog_location": 67425896, /* max(receive_lsn or 0, replay_lsn or 0) */
 "replication_state": "streaming",
 "timeline": 1
}

How it works?

39

Data stored in DCS

$ etcdctl get --print-value-only --prefix /service/demo/status
{
 "optime": 67425896, /* pg_current_wal_flush_lsn() */
 "slots": {
 "patroni2": 67425896,
 "patroni3": 67425896, /* members slots */
 "patroni1": 67425896,
 “my_logical_slot: 67425700 /* permanent slots */
 },
 "retain_slots": [
 "patroni1",
 "patroni2", /* member_slots_ttl */
 "patroni3"
]
}

How it works?

40

Data stored in DCS

$ etcdctl get --print-value-only --prefix /service/demo/config
{
 "loop_wait": 10,
 "ttl": 30,
 "retry_timeout": 10,
 "maximum_lag_on_failover": 1048576,
 "postgresql": {
 "parameters": {
 "max_connections": 100
 }, /* applied to all members (global) */
 "use_pg_rewind": true
 },
 "synchronous_mode": "quorum"
}

How it works?

41

What else?

Notable features

● Standby cluster – running cascading replication to a remote datacenter (region) [docs]

● Synchronous mode – manage “synchronous_standby_names” to enable synchronous replication

whenever there are healthy standbys available [docs]

● Quorum-based failover – reduce latencies, compensating higher latency of replicating to one

synchronous standby by other standbys [docs]

● DCS failsafe mode – survive temporary DCS outages without primary demotion [docs] [slides]

● Citus support [docs] [article]

What else?

43

https://patroni.readthedocs.io/en/latest/standby_cluster.html#standby-cluster
https://patroni.readthedocs.io/en/latest/replication_modes.html#synchronous-mode
https://patroni.readthedocs.io/en/latest/replication_modes.html#quorum-commit-mode
https://patroni.readthedocs.io/en/latest/dcs_failsafe_mode.html#dcs-failsafe-mode
https://speakerdeck.com/cyberdemn/failsafe-patroni-3-dot-0
https://patroni.readthedocs.io/en/latest/citus.html
https://www.citusdata.com/blog/2023/03/06/patroni-3-0-and-citus-scalable-ha-postgres/

More links

● Patroni – Postgres.FM podcast

● Patroni tutorial (A bit outdated but still good)

● Step-by-step Patroni cooking guide talk slides

● Official documentation (Read the docs! No, seriously…)

● Changelog (new features and bugfixes)

● Patroni channel in the PostgreSQL Slack

What else?

44

http://postgres.fm
https://www.youtube.com/watch?v=SrFsInsK1ts
https://speakerdeck.com/cyberdemn/step-by-step-patroni-cooking-guide
https://patroni.readthedocs.io/en/latest/
https://github.com/patroni/patroni/blob/master/docs/releases.rst
https://postgresteam.slack.com/archives/C9XPYG92A
https://pgtreats.info/slack-invite

Thank you!

HOW2025
 PostgreSQL & IvorySQL

Eco Conference

