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What is it, really?



What is it, really?

● Originated from Governor project by Compose, in 2015

● Main functions:

○ Automatic failover

○ Cluster creation and initial setup

○ Cluster management

○ ~ Monitoring
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https://github.com/compose/governor


Automatic failover done wrong
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Avoiding split-brain
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STONITH



Avoiding split-brain

● STONITH (shoot the other node in the head)

● Must use a secondary network

● Almost impossible to get it right

Automatic failover done wrong
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Single witness node
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Single witness node
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Single witness node



Things to consider

● Think about network partition

● Prevent split-brain → fencing

○ STONITH

● Shut down

● Kill old connections, re-configure proxy

○ Self-fencing (locally)

● Watchdog

Automatic failover done wrong
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Local agents
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DC3

Local agents
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Automatic failover done wrong
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primary agent
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Local agents
Automatic failover done wrong
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But how to do it right?

primary standby
WAL stream
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But how to do it right?

primary standby

WAL stream

Quorum

agent agent

21



But how to do it right?
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Patroni: how it works?



General idea

● State stored in Distributed Configuration Store (DCS)

○ Etcd, ZooKeeper, Consul, Kubernetes control-plane

● Built-in distributed consensus (RAFT, Zab)

● Key-value store

● Atomic CAS (compare-and-swap) operations

● Lease/Session/TTL to expire data

○ /leader, /members/*

● Watches for keys

How it works?
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Patroni overview

UPDATES  /leader, /status, …

primary

How it works?

node Bstandby

UPDATES  /members/B

WATCHES /leader

node A

/leader: “A”, 
ttl: 30
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Leader race
How it works?

node A
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standby node B

standby node C

primary

SUCCESS

/leader: “A”, 
ttl: 30

WATCH /leader

WATCH /leader

UPDATE(“/leader”, “A”, ttl=30, 
prevValue=”A”)



Leader race
How it works?

node A

/leader: “A”, 
ttl: 1
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standby node B

standby node C

primary

WATCH /leader

WATCH /leader



Leader race
How it works?
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standby node B

standby node C

NOTIFY(“/leader”, expired=true)

NOTIFY(“/leader”, expired=true)



Leader race
How it works?
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standby node B

standby node C

1) GET A:8008/patroni -> 
timeout
2) GET C:8008/patroni -> 
wal_position: 100

1) GET A:8008/patroni -> 
timeout
2) GET C:8008/patroni -> 
wal_position: 100



Leader race
How it works?
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standby node B

standby node C

/leader: “B”, 
ttl: 30CREATE (“/leader”, “B”, ttl=30, 

prevExists=False)

CREATE (“/leader”, “C”, ttl=30, 
prevExists=False)

SUCCESS

FAIL



Self-fencing

node Aprimary

How it works?

node Bstandby

UPDATE  /members/B

WATCH /leader

UPDATE  /leader

read-only
instance

/leader: “A”, 
ttl: 19

31



Self-fencing

standby

How it works?

node Bstandby

UPDATE  /members/B

WATCH /leader

UPDATE  /leader

node A

demote

/leader: “A”, 
ttl: 9
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read-only
instance



Self-fencing

standby

How it works?

node Bstandby

CREATES  /leader

NOTIFIES /leader expired

node A

/leader: “A”, 
ttl: 0

promote 2.

1.

3.
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Communication with DCS – leader
How it works?

         get / 
(whole cluster)

update /leader

update /status

write /failover

update /sync

…

H
A

 loop
sleep for loop_wait 
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retriable



ttl, loop_wait, retry_timeout
How it works?

loop_wait + 2 * retry_timeout <= ttl

         get / 
(whole cluster)

update /leader

(10) (10) (30)
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Data stored in DCS

$ etcdctl get --keys-only --prefix /service/demo

/service/demo/config     /* global (dynamic) configuration */

/service/demo/initialize            /* cluster identifier */

/service/demo/leader     /* who is the primary? */

/service/demo/members/patroni1

/service/demo/members/patroni2         /* discovery */

/service/demo/members/patroni3

/service/demo/status

/service/demo/history               /* failover history */

/service/demo/failover              /* manual failover/switchover */

/service/demo/sync                  /* synchronous mode */

How it works?
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Data stored in DCS

$ patronictl list

+ Cluster: demo (7497665970948870167) --------+----+-----------+

| Member   | Host       | Role    | State     | TL | Lag in MB |

+----------+------------+---------+-----------+----+-----------+

| patroni1 | 172.18.0.2 | Leader  | running   |  1 |           |

| patroni2 | 172.18.0.7 | Replica | streaming |  1 |         0 |

| patroni3 | 172.18.0.3 | Replica | streaming |  1 |         0 |

+----------+------------+---------+-----------+----+-----------+

How it works?

data retrieved 
from DCS
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Data stored in DCS

$ etcdctl get --print-value-only --prefix /service/demo/leader

patroni1

$ etcdctl get --print-value-only --prefix /service/demo/initialize

7497665970948870167

How it works?
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Data stored in DCS

$ etcdctl get --keys-only --prefix /service/demo/members/patroni2

{
  "conn_url": "postgres://172.18.0.7:5432/postgres",
  "api_url": "http://172.18.0.7:8008/patroni",
  "state": "running",
  "role": "replica",
  "version": "4.0.5",
  "xlog_location": 67425896,  /* max(receive_lsn or 0, replay_lsn or 0) */
  "replication_state": "streaming",
  "timeline": 1
}

How it works?
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Data stored in DCS

$ etcdctl get --print-value-only --prefix /service/demo/status
{
  "optime": 67425896, /* pg_current_wal_flush_lsn() */
  "slots": {
    "patroni2": 67425896,
    "patroni3": 67425896,         /* members slots */
    "patroni1": 67425896,
    “my_logical_slot: 67425700    /* permanent slots */
  },
  "retain_slots": [
    "patroni1",
    "patroni2",            /* member_slots_ttl */
    "patroni3"
  ]
}

How it works?
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Data stored in DCS

$ etcdctl get --print-value-only --prefix /service/demo/config
{
  "loop_wait": 10,
  "ttl": 30,
  "retry_timeout": 10,
  "maximum_lag_on_failover": 1048576,
  "postgresql": {
    "parameters": {
      "max_connections": 100
    },                                     /* applied to all members (global) */
    "use_pg_rewind": true
  },
  "synchronous_mode": "quorum"
}

How it works?
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What else?



Notable features

● Standby cluster – running cascading replication to a remote datacenter (region) [docs]

● Synchronous mode – manage “synchronous_standby_names” to enable synchronous replication 

whenever there are healthy standbys available [docs]

● Quorum-based failover – reduce latencies, compensating higher latency of replicating to one 

synchronous standby by other standbys [docs]

● DCS failsafe mode – survive temporary DCS outages without primary demotion [docs] [slides]

● Citus support [docs] [article]

What else?
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https://patroni.readthedocs.io/en/latest/standby_cluster.html#standby-cluster
https://patroni.readthedocs.io/en/latest/replication_modes.html#synchronous-mode
https://patroni.readthedocs.io/en/latest/replication_modes.html#quorum-commit-mode
https://patroni.readthedocs.io/en/latest/dcs_failsafe_mode.html#dcs-failsafe-mode
https://speakerdeck.com/cyberdemn/failsafe-patroni-3-dot-0
https://patroni.readthedocs.io/en/latest/citus.html
https://www.citusdata.com/blog/2023/03/06/patroni-3-0-and-citus-scalable-ha-postgres/


More links

● Patroni – Postgres.FM podcast

● Patroni tutorial (A bit outdated but still good)

● Step-by-step Patroni cooking guide talk slides

● Official documentation (Read the docs! No, seriously…)

● Changelog (new features and bugfixes)

● Patroni channel in the PostgreSQL Slack

What else?
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http://postgres.fm
https://www.youtube.com/watch?v=SrFsInsK1ts
https://speakerdeck.com/cyberdemn/step-by-step-patroni-cooking-guide
https://patroni.readthedocs.io/en/latest/
https://github.com/patroni/patroni/blob/master/docs/releases.rst
https://postgresteam.slack.com/archives/C9XPYG92A
https://pgtreats.info/slack-invite
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